13 research outputs found

    Reconstruction of the equilibrium of the plasma in a Tokamak and identification of the current density profile in real time

    Get PDF
    The reconstruction of the equilibrium of a plasma in a Tokamak is a free boundary problem described by the Grad-Shafranov equation in axisymmetric configuration. The right-hand side of this equation is a nonlinear source, which represents the toroidal component of the plasma current density. This paper deals with the identification of this nonlinearity source from experimental measurements in real time. The proposed method is based on a fixed point algorithm, a finite element resolution, a reduced basis method and a least-square optimization formulation. This is implemented in a software called Equinox with which several numerical experiments are conducted to explore the identification problem. It is shown that the identification of the profile of the averaged current density and of the safety factor as a function of the poloidal flux is very robust

    EQUILIBRIUM RECONSTRUCTION FROM DISCRETE MAGNETIC MEASUREMENTS IN A TOKAMAK

    Get PDF
    International audienceWe describe an algorithm for the reconstruction of the equilibrium in a Tokamak from discrete magnetic measurements. In order to solve this inverse problem we first use toroidal harmonics to compute Cauchy boundary conditions on a fixed closed contour. Then we use these Cauchy boundary conditions to solve a non-linear source identification problem

    Reconstruction of the equilibrium of the plasma in a Tokamak and identification of the current density profile in real time

    Get PDF
    International audienceThe reconstruction of the equilibrium of a plasma in a Tokamak is a free boundary problem described by the Grad-Shafranov equation in axisymmetric configuration. The right-hand side of this equation is a nonlinear source, which represents the toroidal component of the plasma current density. This paper deals with the identification of this nonlinearity source from experimental measurements in real time. The proposed method is based on a fixed point algorithm, a finite element resolution, a reduced basis method and a least-square optimization formulation. This is implemented in a software called Equinox with which several numerical experiments are conducted to explore the identification problem. It is shown that the identification of the profile of the averaged current density and of the safety factor as a function of the poloidal flux is very robust

    Optimal control of a coupled partial and ordinary differential equations system for the assimilation of polarimetry Stokes vector measurements in tokamak free-boundary equilibrium reconstruction with application to ITER

    Get PDF
    International audienceThe modelization of polarimetry Faraday rotation measurements commonly used in tokamak plasma equilibrium reconstruction codes is an approximation to the Stokes model. This approximation is not valid for the foreseen ITER scenarios where high current and electron density plasma regimes are expected. In this work a method enabling the consistent resolution of the inverse equilibrium reconstruction problem in the framework of non-linear free-boundary equilibrium coupled to the Stokes model equation for polarimetry is provided. Using optimal control theory we derive the optimality system for this inverse problem. A sequential quadratic programming (SQP) method is proposed for its numerical resolution. Numerical experiments with noisy synthetic measurements in the ITER tokamak configuration for two test cases, the second of which is an H-mode plasma, show that the method is efficient and that the accuracy of the identification of the unknown profile functions is improved compared to the use of classical Faraday measurements

    Quasi-static Free-Boundary Equilibrium of Toroidal Plasma with CEDRES++: Computational Methods and Applications

    Get PDF
    International audienceWe present a comprehensive survey of the various computational methods in CEDRES++ for finding equilibria of toroidal plasma. Our focus is on free-boundary plasma equilib-ria, where either poloidal field coil currents or the temporal evolution of voltages in poloidal field circuit systems are given data. Centered around a piecewise linear finite element representation of the poloidal flux map, our approach allows in large parts the use of established numerical schemes. The coupling of a finite element method and a boundary element method gives consistent numerical solutions for equilibrium problems in unbounded domains. We formulate a new Newton method for the discretized non-linear problem to tackle the various non-linearities, including the free plasma boundary. The Newton method guarantees fast convergence and is the main building block for the inverse equilibrium problems that we can handle in CEDRES++ as well. The inverse problems aim at finding either poloidal field coil currents that ensure a desired shape and position of the plasma or at finding the evolution of the voltages in the poloidal field circuit systems that ensure a prescribed evolution of the plasma shape and position. We provide equilibrium simulations for the tokamaks ITER and WEST to illustrate the performance of CEDRES++ and its application areas

    First equilibrium reconstruction for ITER with the code NICE

    No full text
    International audienceIn this short paper we present the first application of the IMAS compatible code NICE to equilibrium reconstruction for ITER geometry. The inverse problem is formulated as a least square problem and the numerical methods implemented in NICE in order to solve it are presented. The results of a numerical experiment are shown: a reference equilibrium is computed from which a set of synthetic magnetic measurements are extracted. Then these measurements are used successfully to reconstruct the equilibrium of the plasma

    First equilibrium reconstruction for ITER with the code NICE

    No full text
    ICFRD2020In this short paper we present the first application of the IMAS compatible code NICE to equilibrium reconstrution for ITER geometry. The inverse problem is formulated as a least square problem and the numerical methods implemented in NICE in order to solve it are presented. The results of a numerical experiment are shown: a reference equilibrium is computed from which a set of synthetic magnetic measurements are extracted. Then these measurements are used successfully to reconstruct the equilibrium of the plasma

    First equilibrium reconstruction for ITER with the code NICE

    No full text
    ICFRD2020In this short paper we present the first application of the IMAS compatible code NICE to equilibrium reconstrution for ITER geometry. The inverse problem is formulated as a least square problem and the numerical methods implemented in NICE in order to solve it are presented. The results of a numerical experiment are shown: a reference equilibrium is computed from which a set of synthetic magnetic measurements are extracted. Then these measurements are used successfully to reconstruct the equilibrium of the plasma
    corecore